The Steroid and Xenobiotic Receptor SXR: A Key Regulator of Drug and Xenobiotic Metabolism

Bruce Blumberg, Ph.D.
Department of Developmental and Cell Biology
Center for Biomedical Engineering
Institute for Genomics and Bioinformatics
University of California, Irvine
Nuclear Receptors - A Large Family of Ligand Modulated Transcription Factors

DNA-binding
AGGTCA

half-site recognition
half-site spacing
dimerization

ligand-binding
transcriptional activation
dimerization

DNA LIGAND
Nuclear Receptors

• Bind to specific DNA targets - hormone response elements
• Most activate transcription upon ligand binding
 – Some are constitutive
 – A few are deactivated by ligand binding
• Ligands are small lipophilic molecules that freely enter cells
 – Diffuse from source
 – Penetrate to a target
• Typically respond to low levels of hormone ~3 ppb (10^{-8} M)
 – Regulation of levels
 – Environmental agents
Mithridates VI Eupator
The Royal Toxicologist

(120-63 BC) King of Pontus
aka Mithridates the Great
Long Standing Questions

- Mithridatum - generalized tolerance to poison

- Adaptive hepatic response (Hans Selye)
 - Exposure to certain “catatoxic” chemicals elicits protection against later exposure to others
 - Apparently mediated via CYP upregulation

- What is the mechanism?
SXR and Close Relatives

- **hSXR**
 - DNA: 141
 - LIGAND: 323

- **mPXR**
 - DNA: 105
 - LIGAND: 357

- **xBXR**
 - DNA: 102
 - LIGAND: 284

- **CXR**
 - DNA: 97
 - LIGAND: 284

- **hCAR**
 - DNA: 155
 - LIGAND: 284

- **hVDR**
 - DNA: 89
 - LIGAND: 338
GAL-SXR Responds to Many Steroids

The graph shows the fold induction of GAL-SXR for various steroids. The x-axis represents different steroids, including solvent, corticosterone, pregnenolone, dihydrotestosterone, dehydroepiandrosterone, progesterone, dexamethasone, estradiol, cortisol, and cortisone. The y-axis represents the fold induction, ranging from 0 to 14. The data is presented as a bar chart with error bars, indicating the variability in fold induction for each steroid.
The Steroid Sensor Hypothesis

- Removal of bioactive steroids and xenobiotics is required for physiologic homeostasis

- Steroid production is regulated, why not catabolism?

- Hundreds of steroid metabolites make it unreasonable to have individual regulation

- Hypothesize a broad specificity sensor that monitors steroid levels and regulates the expression of degradative enzymes, e.g. P450s
 - Broad specificity probably necessitates low-affinity
Predictions and Requirements of the Model

- Sensor should be expressed in tissues that catabolize steroids and xenobiotics
- Catabolic enzymes should be targets for the sensor
- Compounds known to induce catabolic enzymes should activate the sensor
- Partially metabolized (reduced) steroids should activate sensor
Expression of SXR mRNA

heart	brain	lung	placenta	liver	muscle	kidney	pancreas

adrenal medulla | thyroid | adrenal cortex | testis | thymus | small intestine | stomach

9.0 | 9.5
6.5 | 7.5
5.2 | 4.4
3.5 | 2.4
1.4
SXR DNA-binding Specificity

<table>
<thead>
<tr>
<th>DR</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

SXR

hRXRα

<table>
<thead>
<tr>
<th>βDR-2</th>
<th>βDR-3</th>
<th>βDR-4</th>
<th>βDR-5</th>
<th>TRE</th>
<th>MMTV</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

α
Candidate SXR Response Elements in Genes Encoding Steroid Degradative Enzymes

<table>
<thead>
<tr>
<th>Gene</th>
<th>βDR-3</th>
<th>βDR-4</th>
<th>βDR-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyp3A1</td>
<td>tagac AGTTCA tga AGTTCA tctac</td>
<td>caatc AGTTCA acag GGTTCA ccaat</td>
<td>gtgca GGTTCA actgg AGGTCA acatg</td>
</tr>
<tr>
<td>cyp3A2</td>
<td>taagc AGTTCA taa AGTTCA tctac</td>
<td>cac AGGTGA gctg AGGCCA gcagc AGGTCG aaa</td>
<td>gtgct GGTTCA actgg AGGTCA gtatg</td>
</tr>
<tr>
<td>UDP-glucuronosyl transferase</td>
<td>actgt AGTTCA taa AGTTCA catgg</td>
<td>gctg AGGTCA gctg AGGCCA gcagc AGGTCG aaa</td>
<td>agtct AGTTCA gtggg GGTTCA gtctt</td>
</tr>
<tr>
<td>cyp2C1</td>
<td></td>
<td></td>
<td>gagat GGTTCA aggaa GGGTCA ttaac</td>
</tr>
<tr>
<td>P450 oxidoreductase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyp2A1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyp2A2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyp2C6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyp2E1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SXR Activates Transcription Through βDR Elements

- DR-1
- DR-2
- DR-3
- DR-4
- TREp
- βDR-1
- βDR-2
- βDR-3
- βDR-4
- βDR-5

Fold Induction

- solvent
- corticosterone
- pregnenolone
- DHEA
- testosterone
- progesterone
- PCN
- estradiol
- cortisol
- cortisone
Classes of SXR Activators

- Steroids
- Phytoestrogens
- Xenobiotics

Graph showing fold induction for various activators:
- Solvent
- Corticosterone
- Diethylstilbestrol
- Spironolactone
- Tamoxifen
- Cyproterone
- Coumestrol
- Badzen
- Genistein
- Equol
- Quercetin
- Luteolin
- Cyclosporine A
- Rifampicin
- Nifedipine
- Erythromycin
SXR Senses Total Steroid Concentration

- 10 µM individual steroids
- 100 µM total in cocktail
Predictions and Requirements of the Model

- Sensor should be expressed in tissues that catabolize steroids and xenobiotics
 - Expressed in liver, small and large intestine

- Catabolic enzymes should be targets for the sensor
 - CYP genes are known targets of SXR, in vivo

- Compounds known to induce catabolic enzymes should activate the sensor
 - Majority of known CYP3 inducers activate SXR

- Partially metabolized (reduced) steroids should activate sensor
 - Mixture of steroids, each at concentrations below that required to activate SXR, will collectively activate SXR-mediated gene expression
CYP3A4 and Human Steroid Metabolism

- Steroid levels are tightly regulated. Increased catabolism will lead to ACTH release and upregulated adrenal synthesis
 - Observation is elevated ACTH, slightly increased circulating steroids
 - Decreased circulating steroid metabolites

- Increased catabolism will be reflected by urinary metabolites
 - Large increases in urinary steroids caused by rifampicin therapy have led to misdiagnosis of Cushing’s syndrome
 - VP16 SXR transgenic mice have drastically elevated urinary steroid metabolite levels

- Induction of CYP3A4 should lead to decreases in administered steroid levels
 - Steroid crisis in Addison’s patients on rifampicin and oral steroids
 - Pregnancy in rifampicin-treated patients on oral contraceptives
Many CYP3A4 Inducers Are SXR Activators

Natural and Synthetic Steroids

Steroid receptor agonists:
- corticosterone (C21)
- estradiol (C18)
- testosterone (C19)

Steroid receptor antagonists:
- spironolactone
- tamoxifen
- PCN

xenobiotic drugs:
- rifampicin
- clotrimazole

phytoestrogens (isoflavones):
- coumestrol
- equol
Pharmacology of Mouse and Human SXR

hSXR

mPXR

hER

r ER
Model Systems

• Central tenet of model system is parallel biochemistry and endocrinology
 – Toxicology: effects on animals predict effects on humans
 – Nuclear receptors behave virtually identically across species

• Different pharmacology of SXR and PXR suggests that there are important differences in metabolism

• These differences may be highly relevant for toxicology, drug interactions and endocrine disruption

• Cross-species extrapolation must account for differences in response of xenobiotic sensors
 – SXR
 – CAR
Drug Interactions

- CYP3A4 is the primary steroid and xenobiotic metabolizing enzyme

- Drugs interactions arise from:
 - Induction or inhibition of CYP3A4 expression
 - rifampicin and oral steroids
 - St John’s Wort and many drugs
 - Modulation of CYP3A4 enzyme activity
 - macrolide antibiotics (e.g. erythromycin) and many drugs (e.g. Seldane)

- Activated SXR mediates induction of CYP3A4
 - SXR activation is a direct molecular test for potential drug interactions

- Pharmacological differences between inducibility of rodent and human CYP3 genes explained by receptor pharmacology
 - Differences suggest rodents may not be an appropriate model for human drug interactions
 - Rabbit CYP3A induction closely parallels human
 - Mouse now exists that expresses human SXR instead of mouse gene
SXRx and Endocrine Disruption

- SXR regulates the P450-mediated breakdown of ingested steroids and xenobiotics

- Activation of SXR may predict effects of suspected EDC
 - SXR activators may be detoxified by CYP3A action and not a human risk
 - But activators may also be toxified by CYP3A action, increasing the risk.
 - EDC may have no effect on SXR and therefore more likely to act on other receptors, e.g. ER

- SXR is a molecular assay for potential activity of EDCs

- Different pharmacology of SXR and PXR suggests that differences in metabolism may exist and be relevant for risk assessment
Approach to Studying EDC Metabolism

• Test potential for metabolism by investigating SXR activation by a panel of known and candidate EDCs
 – Pesticides: DDT, DDE, methoxychlor, endosulfan, dieldrin, alachlor, chlordane, transnonachlor, chlorpyrifos, kepone
 – Plasticizers: bisphenol A, phthalates
 – PCBs: e.g. 184, 196
 – Alkylphenols: 4-nonylphenol
 – xenobiotics: thalidomide, dichlorophenol, triclosan, BHA, BHT

• Extend analysis to SXRs from other model organisms of interest
 – fish - e.g., zebrafish, medaka, fathead minnow
 – reptiles - alligator, sea turtle
 – birds - Japanese quail, zebra finch
 – amphibians - Xenopus, Rana
 – mammals - monkey, canine

• Investigate actual metabolism in animal models
 – model organisms including humanized mouse
 – wild populations
EDCs can activate SXR

- bisphenol A
- PCB 184
- PCB 196
- DDT
- DDE
- Chlorpyrifos
- nonylphenol
- bis-phthalate
SXR and its mammalian homologs

- Human: DNA (35-107), LIGAND (107-434), 73% identity
- Mouse: DNA (38-104), LIGAND (138-431), 95% identity, 73% similarity
- Rat: DNA (38-104), LIGAND (138-431), 95% identity, 76% similarity
- Rabbit: DNA (118-84), LIGAND (118-411), 94% identity, 84% similarity
EDC activation of SXR

<table>
<thead>
<tr>
<th>Ligand</th>
<th>human</th>
<th>mouse</th>
<th>rat</th>
<th>rabbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-nonylphenol</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>bisphthalate</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>alachlor</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>chlordane</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>transnonachlor</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>chlorpyrifos</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>DDT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>DDE</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>dieldrin</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>endosulfan</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>kepone</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>methoxychlor</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PCB184</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>PCB196</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>genistein</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>bisphenol A</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

- rifampicin | + | - | - | + |
- PCN | - | + | + | + |
Conclusions and prospects SXR and EDC

• Many compounds activate SXR from all four species, suggesting metabolism is the same
 – SXR is a molecular assay for interspecies variations in metabolism

• There are significant differences that suggest metabolism of certain compounds of great interest is different
 – bisphenol A
 – phytoestrogens
 – PCBs

• Animal models used for extrapolation of toxicology and drug interaction testing to humans must be validated for each compound.
 – Is the activation profile of SXR, and by implication metabolism, the same or different?
 – Are the compounds in fact metabolized?
 – What is the nature and fate of the metabolites?
SXR – A steroid and Xenobiotic Sensor

bisphenol A

CYP3A

mdr1

mrp1

SXRx

Target genes
SXR - A Steroid and Xenobiotic Sensor

• SXR has properties predicted for a steroid and xenobiotic sensor
 – Expression
 – Targets
 – Activators
 Endogenous and dietary steroids
 Xenobiotic drugs
 Environmental toxicants
 – Expected responses from induction
 Increased ACTH
 Increased urinary metabolites
 Increased circulating steroids but decreased metabolites

• SXR is an important molecular test for potential species-specific metabolism of drugs and xenobiotics
• Understanding SXR regulation and identifying target genes is an important goal to aid in understanding the xenobiotic response
• SXR must be considered when working with model organisms