
• Contact information
 – Bruce Blumberg
 – Office 4203 BioSci II
 • office hours Tu/Th 2-3 PM (or by appointment in exceptional cases)
 – phone 824-8573
 – blumberg@uci.edu (preferred contact mode)

• check e-mail daily for announcements, etc..
 – I will post all questions received via e-mail, and the answers given, to the course mailing list. This way, everyone will have access to the information
 • 07528-W01@classes.uci.edu is the mailing list for the course
 – The registrar asserts that you have all been automatically subscribed - is this the case?
 – Anyone who does not have ready access to e-mail or the web should speak with me ASAP
 – If you object to your question being posted on the course mailing list, please indicate this clearly in the message..

• lectures will be posted on web page
 – as I have time.
General comments

- Final examination will not be cumulative, however, understanding of concepts and techniques from first part of course is required.

- Material covered will include Dr. LaMorte’s lectures on 3/1 and 3/6

- I will cover material that is not in either book. You are responsible for what I lecture about, not for any particular chapters in the books.

- Please be advised that Dr. La Morte's lectures will be held in the Beckman Laser Institute conference room
General comments (contd)

• Overall philosophy
 – Class is about understanding eukaryotic gene regulation, particularly how to study it.
 – Intended to be informative and cutting edge but also interesting and relevant, even fun.
 – I try to be available to students as much as possible
 – questions during lectures are welcome. Please stop me if something is unclear.

• Goal for 2nd half of the course
 – to familiarize you with current methods of studying gene regulation
 – to gain an understanding of which methods are best applied in a particular situation
 – to survey some important examples of gene regulatory systems and pathways

• Letters of recommendation
 – If you want more than form letter I need to know you as more than a student #
 • come to office hours
 • participate in class discussions
 • make your interest in the subject apparent
 – Good students get good letters
Lecture Outline 2/8/2001 - Introduction of cloned genes into eukaryotic cells, tissues and embryos

- methods to detect gene transfer
 - selection methods
 - antibiotics
 - reporter gene assays
 - types, advantages and disadvantages of each
Selection methods. How does one select for cells that have taken up the DNA of interest

• It is axiomatic among microbiologists that you can accomplish anything if you have an assay, and faster with a method of selection.
• There have been, and will continue to be, numerous publications describing improved methods of selection.
• Rule of thumb:
 – positive selection >>>> negative selection
• metabolic pathway selection (mostly of historical interest)
 – HGPRT and HAT selection
 – DHFR and other amplifiable markers
 – gpt and mycophenolic acid
• antibiotic resistance. All work both in bacterial and mammalian cells. Cost of all is comparable for use in mammalian cells.
 – G418
 – hygromycin
 – zeocin/phleomycin
 – puromycin
 – blasticidin S
• TK selection - widely used as a negative selection
 – gancyclovir
 – FIAU (fialuridine)
Positive selection - antibiotic resistance - G418

- source: aminoglycoside antibiotic related to gentamycin
- activity: broad action against prokaryotic and eukaryotic cells
 - inhibits protein synthesis by blocking initiation
- resistance - bacterial neo gene (neomycin phosphotransferase, encoded by Tn5 encodes resistance to kanamycin, neomycin, G418
 - but also cross protects against bleomycin and relatives.
Positive selection - antibiotic resistance - G418 (contd)

- Stability:
 - 6 months frozen

- Selection conditions:
 - E. coli: 5 µg/ml
 - Mammalian cells:
 - 300-1000 µg/ml. G418 requires careful optimization for cell types and lot to lot variations
 - Requires at least seven days to obtain resistant colonies, two weeks is more typical

- Use and availability:
 - Perhaps the most widely used selection in mammalian cells
 - Vectors very widely available
Positive selection - antibiotic resistance - hygromycin B

- source: aminoglycoside antibiotic from Streptomyces hygroscopicus.
- Activity: kills bacteria, fungi and higher eukaryotic cells by inhibiting protein synthesis
 - interferes with translocation causing misreading of mRNA
- resistance: conferred by the bacterial gene hph
 - no cross resistance with other selective antibiotics
- stability:
 - one year at 4 °C, 1 month at 37 °C
- selection conditions:
 - E. coli: 50 µg/ml
 - mammalian cell lines:
 - 50 - 1000 µg/ml (must be optimized)
 - 10 days- 3 weeks required to generate foci
- use and availability:
 - vectors containing hygromycin resistance gene are widely available
 - in use for many years
Positive selection - antibiotic resistance - zeocin/phleomycin

- source: glycopeptide antibiotic of the bleomycin family produced by a Streptomyces verticillus mutant
- activity: broad against bacteria, eukaryotic microorganisms, plant and animal cells in vivo
 - intercalating reagent -> DNA degradation
 - perturbs plasma membranes
- resistance: conferred by the bacterial ble gene
 - cross-resistance conferred by Tn5 neo gene.
 - Despite manufacturer’s claims to the contrary, this means that one must be careful when using this selection in E. coli since Tn5 is relatively common in laboratory strains.
- Stability:
 - 4 °C for several months, 37 °C for one week
- selection conditions:
 - E. coli - 5 µg/ml
 - mammalian cells
 - 5-50 µg/ml for Phleomycin, 25-1000 µg/ml for Zeocin (must be optimized)
 - 10 days- 3 weeks required to generate foci
- use and availability:
 - vectors containing zeocin resistance gene are now commercially available from InVitrogen
 - not much track record yet
Positive selection - antibiotic resistance - puromycin

- source: aminonucleoside antibiotic from Streptomyces alboniger
- activity: gram positive bacteria, animal and insect cells.
 - Gram negative bacteria and fungi are resistant due to low permeability
 - acts as an analog of 3’ terminal end of aminoacyl-tRNA of both prokaryotic and eukaryotic ribosomes causing premature chain termination
- resistance: bacterial pac gene encodes puromycin N-acetyl-transferase
 - no cross-resistance to other selective antibiotics
Positive selection - antibiotic resistance - puromycin (contd)

- Stability:
 - 4 °C for up to one year

- selection conditions:
 - E. coli: not active, therefore isn’t useful for selection
 - mammalian cells:
 - 3-50 µg/ml (must be optimized)
 - cells detach and die very rapidly - colonies in less than 7 days

- use and availability:
 - in use for many years
 - vectors not widely available
Positive selection - antibiotic resistance - blasticidin S

- source: peptidyl nucleoside antibiotic isolated from Streptomyces griseochromogenes
- activity: broad spectrum in prokaryotes and eukaryotes
 - inhibits peptide bond formation
- resistance: three resistance genes known
 - bsr - Bacillus, deaminase, commonly used in animal cells
 - BSD - Aspergillus, deaminase - commonly used in fungi and plant cells
 - bls - Streptomyces, acetyl transferase - not widely used
- Stability:
 - 4 ºC for up to one year
- selection conditions:
 - E. coli: 100 µg/ml
 - mammalian cells:
 - 3-50 µg/ml (must be optimized)
 - cell death occurs very rapidly allowing transformants to be selected in as little as 7 days
- use and availability:
 - been around for ~ 10 years
 - not widely used yet
Negative selection HSV-TK

- source: Herpes simplex virus encodes a thymidine kinase gene.
 - This was used to engineer resistance to HAT medium in older experiments. Cumbersome

- activity: presence of HSV-tk confers sensitivity to certain nucleoside analogs. This is widely used in current antiviral therapy, e.g. AIDS, Herpes, CMV, etc
 - converts these nucleoside analogs into toxic compounds
 - gancyclovir
 - FIAU (fialuridine)

- selection conditions:
 - FIAU - 0.2 µM - 0.2 mM is working concentration. needs considerable optimization
 - gancyclovir is quite variable and gives more non-specific toxicity than FIAU

- use and availability
 - very widely used as a negative selection in gene targeting experiments
 - touchy and difficult to optimize
Selection methods - summary

• Considerations
 – what is the goal of the experiment?
 • Are multiple, different constructs needed in each cell type?
 – E.g. constructing multiply marked chromosomes by homologous recombination
 – if not, most any selection will work
 • what is already working in the lab or surrounding labs?
 – Are there time constraints that must be addressed?
 – Short term vs long term goals
 • will the cell type require multiple rounds of selection?
 • Are there enough selective markers available or must they be recycled?

• positive vs negative selection
 – Positive selection virtually always works
 • methods are straightforward to optimize and very effective
 • negative selection must be carefully calibrated and optimized.
 • Even then, it frequently fails since the dose required to kill all of the undesirable cells also kills many desirable ones as well
Reporter genes and assays

- The goal is to detect the presence of the transferred gene
 - physical presence (e.g. mRNA)
 - biological activity
 - effect on other genes
- typical strategy is to engineer a DNA construct that reports the presence of a desirable feature, e.g., the activity of a promoter
 - two basic flavors exist
 - promoter constructs - promoter or promoter fragment is fused to a reporter marker
 - minimal promoters containing a response element fused to a reporter gene
- common reporter genes utilized - typically these are enzymes.
 - chloramphenicol acetyl transferase (CAT)
 - luciferase (luc)
 - β-galactosidase (β-gal)
 - β-glucuronidase (β-gus)
 - β-lactamase
 - secreted alkaline phosphatase (SEAP)
 - growth hormone (GH)
 - green fluorescent protein (GFP)
Reporter genes and assays (contd)

• important issues for reporter gene selection
 – What is the sensitivity required?
 – What is the cost of the enzymatic substrate vs the sensitivity required?
 – How many assays are required?
 – How convenient is it to do required transfection controls?
 – What is the equipment required?
 – What is the dynamic range of the assay?
 • What is the difference between the lowest and the highest activity detectable in the same reaction without dilution?
 • Very important for high-throughput assays
 – Is in vivo detection required?
 – What reagents are readily available vs when you need to do the assays?
Typical reporter constructs - 1

- promoter analysis vector
 - required features
 - readily detectable reporter gene
 - no eukaryotic regulatory sequences
 - promoters
 - enhancers
 - multiple cloning site
 - bacterial origin of replication
 - antibiotic resistance for bacterial selection
 - nice extras
 - eukaryotic selection
Typical reporter constructs - 2

- enhancer analysis vector
 - required features
 - readily detectable reporter gene
 - minimal promoter sequence, e.g., TATA box, transcription initiation site
 - SV40
 - Herpes thymidine kinase
 - heat shock
 - multiple cloning site upstream
 - bacterial origin of replication
 - antibiotic resistance for bacterial selection
 - nice extras
 - eukaryotic selection
Reporter genes 1 - CAT

- chloramphenicol acetyl transferase
- enzyme catalyzes the addition of acetyl groups from acetyl-CoA to $[^{14}\text{C}]-\text{chloramphenicol (CAP)}$
- methods
 - simple biochemical reaction - incubate cell extracts with substrates, extract into ethyl acetate, dry, resuspend and spot on TLC plate
 - TLC assay - separation of acetylated products by thin layer chromatography and detection by autoradiography
 - modest linearity - not particularly quantitative
 - sensitivity is $\sim10x$ lower than LSC assay
 - VERY tedious for multiple samples
Reporter genes 1 - CAT

- Methods (contd)
 - LSC assay - substitute butyryl-CoA for acetyl-CoA. Butyryl-CAP is soluble in xylene whereas CAP is not. Partition reaction between xylene and aqueous phase. Count organic phase.
 - linear for nearly three orders of magnitude
 - sensitivity 3×10^{-4} units of CAT (1 unit transfers 1 nmol of acetate to CAP in one minute at $37^\circ C$.
 - sensitivity is ~ 20 pmol
Reporter genes 1 - CAT (contd)

- Methods (contd)
 - ELISA - antibody-based assay (CAT doesn’t need to be active)
 - lyse cells, bind extract to micotiter plate wells, detect peroxidase activity
 - 10 pg/well sensitivity \(\approx 1\) pmol
 - ELISA > LSC > TLC assay
 - sensitivity depends on the nature of the peroxidase substrate used.
Reporter genes 1 - CAT (contd)

- advantages
 - little or no equipment required TLC tank or scintillation counter (plate reader for ELISA)
 - widely used in literature
- disadvantages
 - sensitivity is modest
 - dynamic range is not so great (max 3 decades for ELISA, less for radioactive)
 - radioactive assay - 14C is most expensive isotope to dispose of
 - very easy to exceed linear range of radioactive assay necessitating an expensive and tedious repeat.
 - throughput is modest for radioactive versions tolerable for small numbers of ELISA
 - ELISA assays are VERY tedious to perform without plate washers and dispensers. With them it is very time consuming
 - cost
 - radioactive assays cost >$3.00 each
 - ELISA version ~$2.00/assay (well) or ~$200/96-well plate
 - we do ~10-20 96-well plates/week so this is not reasonable.
Reporter genes 2 - luciferase

- luc gene encodes an enzyme that is responsible for bioluminescence in the firefly. This is one of the few examples of a bioluminescent reaction that only requires enzyme, substrate and ATP.
- Rapid and simple biochemical assay. Read in minutes
- Two phases to the reaction, flash and glow. These can be used to design different types of assays.
 - Addition of substrates and ATP causes a flash of light that decays after a few seconds when [ATP] drops
 - after the flash, a stable, less intense “glow” reaction continues for many hours - AMP is responsible for this

Flash reaction

Glow reaction
Reporter genes 2 - luciferase (contd)

- flash reaction is ~20x more sensitive than glow
 - 5 fg of luciferase or subattomolar levels (10^{-18} \text{ mol})
 - substrate must be injected just before reading (equipment requirement)
 - OR stabilized assay utilized (5’1/2 life) This uses CoA (increased cost)

- glow reaction is more stable
 - allows use of scintillation counter
 - no injection of substrates required
 - potential for simple automation in microplate format
 - add reagents, read at leisure
Reporter genes 2 - luciferase (contd)

• advantages
 – large dynamic range up to 7 decades, depending on instrument and chemistry
 – rapid, suitable for automation
 – instability of luciferase at 37 °C (1/2 life of <1hr) improves dynamic range of transient assays
 • at least one vendor has stabilized luciferase by removing the peroxisome targeting signal - lower dynamic range
 – inexpensive - <$0.40/reaction commercially or <$0.05 homemade
 – this is <$5.00/96-well plate - reasonable
 – widely used

• disadvantage is equipment requirement
 – luminometer (very big differences between models)
 • photon counters - very sensitive, saturate rapidly (~100,000 events/second) 5 decades or so
 • induced current - do not saturate but may not be as sensitive (5 decades)
 • a very few are sensitive and have large linear range (6-7 decades)
 – OR liquid scintillation counter (photon counter)
Reporter genes 3 - Renilla luciferase

- isolated from the sea pansy Renilla reniformis (occurs off CA coast)
- different substrate coelenterazine
 - very expensive $80/mg vs $0.99 for luciferin
 - commercial assays - dual luciferase $0.75/reaction
 - ~$75/96-well plates
- requires a luminometer that can do multiple injections
 - or must use glow reactions
- typically used as transfection control, rather than true reporter gene due to expense
- no advantages over standard luciferase as reporter
- slight advantage as transfection control (fast, sensitive)
Reporter genes 4 - β-galactosidase

- very stable enzyme tetramer
- cleaves β-D galactoside linkage
- simple biochemical reaction
 - but must take care to stay in linear range
- detection sensitivity depends on substrate used in enzymatic assay (fast, inexpensive)
 - colorimetric - ONPG, ~500 pg/ml, <$0.001/rxn
 - fluorescent - MUG ~50 pg/ml
 - chemiluminescent ~20 fg/rxn, $0.70/rxn
- OR ELISA substrate used (slow, very expensive) ~50 pg/ml ~$2.00/rxn
 - colorimetric
 - fluorescent
 - chemiluminescent
Reporter genes 4 - β-galactosidase (contd)

- **dynamic range**
 - enzymatic assays are 3 (colorimetric) to 5 (chemiluminescent) decades.
 - ELISA assays - 3 decades

- **advantages**
 - can be very inexpensive
 - can require little equipment (spectrophotometer)
 - stable enzyme at 37ºC - good for embryos

- **disadvantages**
 - sensitive assays are expensive and time consuming (ELISAs) or require considerable equipment
 - luminometer
 - fluorometer
 - stability of the enzyme makes it a poor choice for reporter in transient transfections (high background = low dynamic range)
 - variable background from endogenous β-galactosidases
 - may not function in some cell types (e.g. Xenopus cells)

- **primary applications**
 - frequently used as a transfection control
 - reporter in transgenic animals
 - lineage tracer in microinjected embryos
Reporter genes 5 - β-glucuronidase

- very stable enzyme tetramer similar to β-gal
- cleaves β-D glucuronide linkage
- simple biochemical reaction
 - but must take care to stay in linear range
- detection sensitivity depends on substrate used in enzymatic assay (fast) but similar to β-gal
 - colorimetric and fluorescent substrates available
- dynamic range - 3 decades
- advantages
 - low background
 - can require little equipment (spectrophotometer)
 - stable enzyme at 37°C
- disadvantages
 - sensitive assays require
 - stability of the enzyme makes it a poor choice for reporter in transient transfections (high background = low dynamic range)
- primary applications
 - typically used in transgenic plants with X-gus colorimetric reporter
Reporter genes 6 - β-lactamase

- based on E. coli bla gene - cleaves β-lactam rings in penicillins and cephalosporins
- load up living cells with CCF2/AM reagent and monitor change in fluorescence from 520 nm to 447 nm in a fluorometer
- sensitive detection.
 - Possible to detect activity in single cells with stably transfected reporter cells
 - sensitivity is femtomolar (about 1000x less than luciferase)
- dynamic range is ~ 6 decades
- primary use is for reporter in high throughput assays using living cells
Reporter genes 6 - β-lactamase (contd)

• advantages
 – single cell detection allows FACS sorting of transfected cells
 – can use as an insertional trap in living cells
 • random insertions into genome can be mapped to genes and analyzed
 – sensitive detection

• disadvantages
 – expensive, single source (Aurora Biotech)
 – license limitations (<1000 compounds/year)
 – equipment requirement - fluorometer or fluorescence microscope equipped for FRET analysis
 – not yet widely used
Reporter genes 7 - human growth hormone (hGH)

- a relatively old and not widely used reporter system that employs human growth hormone as a secreted reporter gene
 - kits sold by Nichols Institute - local
- can be used in living cells
- ELISA assay or RIA
- sensitivity
 - ELISA - 5 pg/ml
 - RIA - 100 pg/ml
- linearity is ~2-3 decades
- expensive ~$2/rxn
- advantage
 - measure activity in supernatant
 - kinetics possible
 - sensitive
- disadvantage
 - expensive - unthinkable for large scale transfections (~$200/96-well plate)
 - ELISA assay is time consuming and tedious
 - stability of GH in medium gives the assay only a very modest dynamic range
Reporter genes 8 - secreted alkaline phosphatase (SEAP)

- reporter construct produces human placental alkaline phosphatase that is secreted into the medium
- very simple biochemical assay. Simple addition of substrate to aliquot of culture medium.
- Sensitivity is ~10 fg/assay (attomolar levels)
- linearity is ~5 decades
- moderately expensive ~$0.40/rxn
- advantages
 - cell lysis not required
 - can monitor gene expression over time or in response to changing treatments
 - can monitor kinetics of response
- disadvantages
 - not widely used (reviewers)
 - need to construct new reporters
- applications
 - much better for stable cell lines

Figure 25. Principle of the SEAP Reporter Gene Assay, chemiluminescent. Alkaline phosphatase is secreted into cell culture medium (step 1). The secreted alkaline phosphatase (SEAP) dephosphorylates CSPD substrate, emitting light at 477 nm (step 2).
Reporter genes 9 - green fluorescent protein (GFP)

- source is bioluminescent jellyfish Aequora victoria
 - GFP is an intermediate in the bioluminescent reaction
- absorbs UV (~360 nm) and emits visible light.
 - has been engineered to produce many different colors (green, blue, yellow, red)
 - These are useful in fluorescent resonance energy transfer experiments
- simply express in target cells or embryos and detect with fluorometer or fluorescence microscope
- sensitivity is low
 - GFP is non catalytic, 1 µM concentration in cells is required to exceed autofluorescence
- dynamic range is modest ~ 3 decades
- advantages
 - can detect in living cells
 - kinetics possible
 - lineage tracing possible
 - FACS analysis possible
 - inexpensive (no substrate)
- disadvantages
 - low sensitivity and dynamic range
 - equipment requirements
- primary applications
 - lineage tracer and reporter in transgenic embryos
Reporter genes summary - which reporter is best?

- What is the sensitivity required?
 - Luciferase and β-lactamase are most sensitive
- What dynamic range is needed?
 - Luciferase and β-lactamase have 6-7 decades
- What is the cost of the enzymatic substrate vs the sensitivity required?
 - Luciferase is by far the least costly of the sensitive assays
 - Colorimetric β-gal is the cheapest overall
- How much labor is required to perform the assay vs the cost/assay
 - GFP is the easiest - no substrate or reaction
 - Luciferase and β-lactamase are good choices
 - ELISA based assays are expensive and painful
- How many assays are required in what time period?
 - Luciferase and enzymatic β-gal are the fastest
- How convenient is it to do required transfection controls?
 - Luciferase and β-gal is cost effective
 - β-lactamase may be best for stables
Reporter genes summary - which reporter is best? (contd)

- What is the equipment required?
 - β-lactamase requires most costly equipment (tunable fluorometer) (~$40-120K)
 - luciferase requires a good luminometer for high sensitivity (~$20K)
 - scintillation counter is less sensitive and more expensive ($35-$80K)
 - ELISA assays require plate readers (washers and dispensers are necessary for high throughput)

- Is in vivo detection required?
 - β-lactamase is most sensitive
 - GFP is a good choice for lineage tracing

- What equipment and reagents are readily available vs when you need to do the assays?
 - It doesn’t make sense to set up a new method if you need to move quickly and something is already working in the lab
 - Is the equipment available (e.g. luminometer)

- What is already working in the lab vs projected cost, sensitivity and throughput issues?
 - E.g. luciferase is the most cost effective overall but this may not be the case if you already have CAT reporters and don’t need to do many assays